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Abstract –   

Brain-Computer Interface (BCI) enables direct communication between the brain and an 
external device. BCI systems have become a popular area of study in recent years. These 
technologies can be utilized in various ways to assist people with disabilities and healthy 
individuals. Regarding substantial BCI advancements, we can say that these systems are on the 
verge of commercialization. This review has considered current trends in BCI research on 
inclusive education to assist students with disabilities in achieving improved learning outcomes 
for all students in an inclusive environment.  
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1. Introduction 

Over the past few decades, research on brain-computer interface (BCI) devices has become 
widespread. BCI enables a direct connection between the brain and an external device such as 
a computer, robot, neuro-prosthesis, exoskeleton, speech prosthesis, assistive technology, or 
wheelchair [1] [2]. Through several focus groups with persons with disabilities, we found an 
interest in using BCI technology to innovate new solutions and products [3]. These systems 
can be utilized for a variety of purposes. They are typically employed for clinical purposes but 
can also be used for entertainment, training, security, treatment, education, safety, 
communication, and control, among other applications [4][5]. Most BCI systems are separated 
into invasive and non-invasive approaches. The non-invasive technique is the most popular and 
most secure of these options. Even though numerous publications have been published and 
several actual applications have been developed, BCI systems still face numerous obstacles 
and restrictions. 

Understanding how the brain functions to measure and interpret brain waves is crucial. The 
electrical and magnetic phenomena of neural function can be monitored during brain 
functioning. The most popular form of electrophysiological observation is 
electroencephalography [6], in which biosensors measure and record electrical signals 
generated by brain activity. Brain cells communicate by sending electrical impulses; the more 
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impulses sent, the more electricity the brain generates. The pattern of this electrical activity can 
be measured by an electroencephalogram (EEG); these EEG data are often analyzed by a 
quantitative EEG (QEEG) approach, in which the frequency spectrum of the EEG signals is 
evaluated [7]. Figure 1 presents an overview of possible placement over the scalp to detect and 
monitor electrical impulses of brain activities [8].  

 

Figure 1. Possible Electrode placement over the scalp. 

Taking an EEG requires sophisticated, expensive, extensive, and immobile equipment; 
however, technological advancements have enabled mobile EEG biosensor-based embedded 
devices for new applications, including entertainment, control devices, and education. In these 
applications, a BCI establishes the relationship between the EEG-observed brain activity and 
the generated function [9]. Advanced BCIs include biosensors and modern signal processing 
units, are less expensive and more portable due to their simple design, and are as accurate as 
clinical EEG equipment [10]. Table 1 presents a summary of different methods. 

Table 1. Summary of neuroimaging methods. 

Neuroimaging 
method 

Activity 
measured 

Direct/Indirect 
Measurement 

Temporal 
resolution 

Spatial 
resolution Risk Portability 

 

EEG Electrical Direct ∼0.05 s ∼10 mm Non-
invasive Portable 

MEG Magnetic Direct ∼0.05 s ∼5 mm Non-
invasive Non-portable 

ECoG Electrical Direct ∼0.003 s ∼1 mm Invasive Portable 

Intracortical 
neuron recording Electrical Direct ∼0.003 s 

∼0.5 mm 
(LFP) 

Invasive Portable 
∼0.1 mm 
(MUA) 
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Table 1. Summary of neuroimaging methods. 

Neuroimaging 
method 

Activity 
measured 

Direct/Indirect 
Measurement 

Temporal 
resolution 

Spatial 
resolution Risk Portability 

 

∼0.05 mm 
(SUA) 

fMRI Metabolic Indirect ∼1 s ∼1 mm Non-
invasive Non-portable 

NIRS Metabolic Indirect ∼1 s ∼5 mm Non-
invasive Portable 

 

 
Figure 2. Sample illustration: a model of bioelectric signals. 

Education research demonstrates that active student participation facilitates acquiring and 
retaining new information more effectively than traditional lecture-based instruction [11]. 
Moreover, when this active engagement is group-based as opposed to individual-based, 
students’ problem-solving, written, and speaking skills, as well as their learning and 
cooperative skills [12]. 

Effective acquisition of practical engineering skills is possible through problem-based learning 
(PBL) [13], team-based learning [14], and project-based learning (PjBL) [15]. Engineering 
strongly emphasizes the ability to apply information in the real world. 
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2. BCI as an Assistive Technology 

Significant advances have been made in the research of BCI control [16] [17]. It can be used 
in different use cases such as and not limited to:  

• Control of external devices, such as limbs prostheses [18]  
• Smart home environments [19]  
• Robots and Exoskeletons [20] 
• Robotic hand [21] 
• Hearing prostheses [22] 
• Wheelchairs [23] 
• Computer programs [24] 
• Virtual reality, avatars, and metaverse [25]  
• Virtual environment and smart cities [26] 

BCI's most important use is to give individuals intuitive control over overreaching and grasping 
movements using their paralyzed limbs [27]. Additional possible applications include 
communication [28]. One of the biggest challenges is restoring and replacing motor function 
or communication for people with physical disabilities. 

3. BCI control in Educational and Serious Games  

All kids rely heavily on play for their learning and growth. Both neurotypical and neurodiverse 
children gain more from engaging in activities that keep them interested, engaged, and offer 
embedded learning opportunities [29]. However, current BCI software focuses on basic, utility-
driven applications, such as spelling grids and cursor movement. While valid, such applications 
are limited in their appeal for sustained use, particularly for young BCI users. Evidence 
suggests that enhancing engagement in BCI through gamified learning may result in a broader 
acceptance of the technology while aiding in the dissemination of BCI control schemes.[30]. 
A growing trend across BCI research endeavors reveals that more engaging. User-friendly 
activities may promote a variety of tangible boons in BCI use—both in short-term task learning 
and long-term BCI accuracy [31]. Therefore, there is an obvious need to support the 
development of more engaging, accessible BCI software that includes key play components in 
pediatric BCI. 

BCI systems provide the new potential for both virtual plays (e.g., videogames and digital 
media) and physical play (e.g., manipulation of toy robots, cars, et cetera). Using the non-
muscular properties of BCI, such technologies may enable previously excluded populations to 
explore and learn through play. BCI systems provide potential for both virtual play (e.g., 
videogames and digital media) and physical play (e.g., manipulation of toy robots, cars, et 
cetera). Using the non-muscular properties of BCI, such technologies may enable previously 
excluded populations to explore and learn through play. Previous research has demonstrated 
mediums as essential for continued learning and rehabilitation in children with disabilities. 
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Advancements in BCI research furthering the interaction between BCI systems and play thus 
represent a promising untapped potential for pediatric BCI end-users. 

4. The outcome of learning activities using BCI 

BCI can play a vital role in closing the knowledge gap and improving educational skills in 
students with disabilities [32]. The primary learning outcomes of these courses are that students 
with disabilities can: 

• Classify systems based on their properties and understand and exploit the implications 
of linearity, time invariance, and stability; 

• Determine and use Fourier transforms and other signal analysis methods; 
• Understand the application of control methods, proportional–integral–differential 

algorithms, and properties of a control; 
• Understand and analyze the design implications and interconnections of physical and 

control systems; 
• Develop mathematical models for real physical and control systems and produce block 

diagram implementations of the mathematical models and control methods. 

BCI can present an alternative technology to control and take online courses during crises [33].  

5. Conclusion and future work 

In general, BCI connects the brain and external devices. BCI is suitable for the improvement 
and facilitation of the life of everyone. BCIs can be used in many areas and inclusive education. 
Overall, findings show that BCI is a topic being closely studied by scientists worldwide. This 
study also demonstrates that BCI technology was commonly used for medical objectives. In 
education, BCI can be used in remote learning to control the computer for students with 
physical disabilities. The technology is still under development and can achieve excellent 
results with impact in the future.   
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