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Abstract- Sign language is a primary channel for the deaf and hard-hearing to communicate. 
Sign language consists of many signs with different variations in hand shapes, motion patterns, 
and positioning of hands, faces, and body parts. This makes sign language recognition (SLR) a 
challenging field in computer vision research. This paper tackles the problem of few-shot SLR, 
where models trained on known sign classes are utilized to recognize instances of unseen signs 
with only a few examples. In this approach, a transformer encoder is employed to learn the 
spatial and temporal features of sign gestures, and an embedding propagation technique is used 
to project these features into the embedding space. Subsequently, a label propagation method is 
applied to smooth the resulting embeddings. The obtained results demonstrate that combining 
embedding propagation with label propagation enhances the performance of the SLR system and 
achieved an accuracy of 76.6%, which surpasses the traditional few-shot prototypical network’s 
accuracy of 72.4%. 
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1 Introduction 

Sign language represents the main channel for deaf or vocal impairment people to com- 
municate, exchange knowledge and express their feelings with others, and build social 
relationships (1). As technology advances, people with hearing impairments and deafness 
can communicate with their community more efficiently by translating sign language into 
natural languages and vice versa (2). 

sign language recognition (SLR) is one of the most widespread critical problems addressed 
in computer vision (3). Despite most signs have clearly defined looks, they are slightly 
different from one another visually (4; 5). As a result, for SLR to be a comprehensive 
technique, it requires fundamental advancements in modeling and identifying fine-grained 
spatiotemporal patterns of hand movements (3). There are also other factors that affect 
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the performance of the recognition task, including variations in the visibility perspective 
(6), the development of sign languages over time (7), and regional differences in sign 
language (8). 

SLR technique can be categorized into isolated and continuous SLR. Isolated SLR sys- 
tems target word-level signs, whereas continuous SLR approaches recognize sign language 
sentences (9). Isolated SLR has been studied extensively in the literature compared with 
continuous SLR (2). One main issue with these approaches is the need for a large num- 
ber of annotated samples per sign (10) (11) (12). Annotated samples of all signs in all 
languages of interest must be collected to satisfy this dependency. These samples must 
include signs expressed multiple times by multiple individuals per sign under different 
recording settings. Globally, more than 140 sign languages are spoken along with several 
dialects (13). Consequently, scaling up SLR is hindered by the demand for supervised 
examples. Recently, a few solutions have attempted to overcome this problem using 
few shot learning to recognize unseen signs with few annotated samples (14; 15; 16; 3). 
Few-shot learning is a technique to learn class discrimination from a limited number of 
labeled samples. 

In this paper, we introduce a few-shot learning approach for SLR that is specifically de- 
signed to generalize well to unseen classes. Our approach accepts pose information of sign 
gestures and feeds them into a transformer encoder to extract a set of features encoding 
spatial and temporal information. We then transform these features from the features 
space to the embedding space by leveraging embedding propagation with label propa- 
gation techniques. The proposed approach has been evaluated using the WLASL-100 
dataset and the obtained results demonstrate the effectiveness of combining embedding 
propagation with label propagation for few-shot learning for SLR. 

This paper is arranged as follows. Section 2 begins with a review of the relevant literature. 
Then in Section 3, we present the few-shot SLR method, and the experimental work is 
presented in Section 4. Our conclusion and future work are presented in Section 5. 

 
2 Related work 

Sign language recognition (SLR). Several techniques have been developed in the 
last two decades to recognize sign language gestures(1; 2). The majority of these tech- 
niques focus mainly on tracking and recognizing signer’s hands (17; 18; 19; 20). Hands 
motion represents the manual part of the sign language, whereas body movements and 
facial expressions represent the non-manual part of the sign language.  Few studies 
in the literature that tried to simultaneously recognize manual and non-manual signs 
(21; 22; 23). 

There have been several attempts to develop SLR approaches based on deep learning in 
recent years. Camgoz et al. (24) proposed a transformer-based model for Continuous SLR 
and translation. The temporal information of the sentence’s signs is learned in a unified 
way using a Connectionist Temporal Classification (CTC) loss. A previous study (25) 
proposed a progressive transformer to translate discrete speech sentences into continued 
3D expression sequences. In this work (26), Tao et al. (26) employed a multi-view 
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augmentation of American sign alphabets to address incomplete occlusions and reduce 
the impact of perspective changes. The resulting augmented images are then fed into a 
simple convolution neural network (CNN). In another study (27), a CNN was used to 
combine several spatial and spectral constructions of images of hand gestures to create 
a method for the visual detection of fingerspelling in gestures. The proposed method 
creates spatiotemporal images of hand sign motions in Gabor spectral formats and then 
utilizes an improved CNN to categorize the gestures in the joint space into appropriate 
classes. 

SAMSLR, a multi-modal skeleton-aware SLR framework, was proposed as a way to ex- 
ploit multi-modal information for SLR (28). Huang et al. used a 3D-CNN to learn 
spatial-temporal aspects of sign gestures (29). A set of features were extracted from the 
signer’s hands to highlight the significant changes in hand motions. A dataset consisting 
of 25 signs was used to evaluate the proposed approach and an accuracy of 94.2% was 
reported. Another system was developed for recognizing sign language alphabets and an 
accuracy of 98.9% was reported (29). 

Using motion history images produced from color frames, authors in (30) proposed a 
model for isolated SLR. This technique was used to summarize the spatiotemporal in- 
formation of each sign. A model that accepts RGB and motion history images was 
implemented as a movement-based spatial attention module combined with the 3D ar- 
chitecture. Using a late fusion technique, the model features are directly applied to the 
features of the 3D model. Albanie et al. (31) attempted to deal with the lack of anno- 
tated sign language data by detecting keywords in processed TV broadcasts. In 1,000 
hours of video, 1000 signs are automatically localized through weakly aligned subtitles 
and keyword spotting. Authors in (32) offered an integrated framework for multiple 
instance learning in ongoing sign language movies. 

 
Few-shot SLR In contrast to traditional supervised-based SLR, few-shot learning- 
based approaches recognize unexplored sign classes with either very few training samples 
(few-shot SLR) or no visual training samples (zero-shot SLR). Cornerstone Network (CN) 
is a few-shot learning model proposed by (14) that can mitigate the impact of support 
samples in unsuitable conditions. In this network, the mean with the bias of support 
samples are extracted from the input samples and used as an input features. Then, 
neural networks with clustering algorithms were used to learn the mapping from input 
space to the embedding space. As with the Siamese networks, the feature extraction 
network was trained in the same manner so that the features from the heterogeneous 
data are distributed as widely as possible. Similarly, Shovkoplias et al. (15) investigated 
several few-shot learning methods, such as Model-Agnostic, Meta-Learning, Matching 
Networks, and Prototypical networks, to classify electromyogram recordings of deaf and 
dumb gestures. Authors in (16) employed a pre-trained key-point predictor to keep only 
the information related to the body, hand, and face and discard other areas. This allows 
better comparison between vector embeddings as rich representations are learned from 
body key point sequences. Using k-nearest neighbors, cosine similarity, and Prototypical 
networks, the new input vector is classified by comparing its distance to a few examples 
of each class. 
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Bilge et al. (3) applied zero-shot learning to class sign language gestures without any 
annotated samples. In their work, semantic class representations are constructed from 
readily available textual sign descriptions derived from sign language dictionaries. These 
representations are used to map signs during the inference to their corresponding classes. 
Similarly, a zero-shot learning framework is used to develop spatiotemporal models of 
body and hand regions with the use of semantic class representations (33). RGB and 
depth modalities were used in this study. The approach includes two vision transformer 
models that identify body parts and segment them into 9 parts. Then, a set of visual 
features are extracted by the second transformer. 

 
3 Methodology 

 
 

Figure 1: The proposed framework. Embedding and label propagations representations 
are taken from (34) 

 
In this section, we present an overview of our proposed pipeline, illustrated in Figure 
1. The pipeline’s architecture integrates the transformer encoder (35) with embedding 
propagation (34). Initially, the transformer encoder model extracts features from each 
sign gesture. These features are subsequently mapped to embeddings via the embedding 
propagation component. We then evaluate two approaches for embedding smoothing, 
label propagation and prototypical network. Finally, the refined embeddings are input 
into a classifier to categorize each sign into its corresponding label. 

 
3.1 Transformer Model 

A transformer-based model proposed by (35) is used in our pipeline as a feature extractor 
to learn body pose representations. The features are extracted using the transformer’s 
encoder, while the decoder is replaced by the embedding propagation component. Each 
video frame undergoes standard pose estimation preprocessing, identifying head, body, 
and hand landmarks. To prevent model overfitting and enhance its generalization, the 
skeletal data is augmented during training, inspired by the techniques proposed in (35). 
Specifically, every joint coordinate in each frame is randomly rotated up to 13 degree 
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angle. These joint coordinates are then transformed into a new plane, giving the video 
a tilted appearance. Subsequently, the landmark is rotated relative to the current land- 
mark as it passes through the keypoints of both hands. Following this, irrelevant spatial 
features are largely removed by normalizing the signer’s body proportions, camera dis- 
tance, and frame location, resulting in a vector of normalized body poses as input to 
the model. Each frame’s pose vector consists of 54 joint locations, which are then en- 
coded with positional information. The learned encoding is used with a dimension of 
108 and is added elementwise to the pose vector. The input sequence is fed into the 
transformer’s encoder layers, passing through a self-attention module and a two-layer 
feedforward network. The self-attention module comprises nine heads and six encoder 
layers. 

 
3.2 Embedding Propagation 

Embedding propagation is a technique to map features into a set of interpolated features 
called embeddings. In this work, we used the embedding propagation technique proposed 
in (34). This technique takes the extracted input features using the transformer encoder 
into the episodic data. Then, it produces a set of embeddings z˜i in two steps. First, for 
every pair of features (i, j ), the distance is calculated as d2 = zi − zj2 and the adjacency 
matrix as Aij = exp(−d2 /σ2) where σ2 is a factor for scaling and Aii = 0 for all i . Then, 
a Laplacian of the adjacency matrix is computed as follows: 
 

L = D−1/2 ∗ AD−1/2, Dii = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖  (1) 

Then, the propagator matrix is obtained as follows, 

P = (I − αL)−1 (2) 

where I is an identify matrix and α ∈ R is a factor for scaling, and the final embeddings 
are computed as follows, 

𝑧𝑧𝚤𝚤 �= ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖  (3) 
  

Embedding propagation removes unwanted noise from the feature vectors since the 
𝑍𝑍𝚤𝚤 �  are now a weighted sum of their neighbors. 

To perform manifold smoothing on the resulting embedding, we evaluated label propaga- 
tion and prototypical network (36) techniques. The model optimization and classification 
are performed on the output of the smoothing technique. 

 
4 Experimental work 

Dataset. We utilized the Word-Level American Sign Language (WLASL) dataset to 
train and evaluate our proposed approach (37). WLASL is a dataset of American Sign 
Language comprising 100 distinct sign gestures, each performed by multiple signers, with 
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more than three signers executing each sign. The dataset includes pose information for 
all the signs. In our work, we divided the data into three sets: a base set with 90 
gestures, a validation set with 5 gestures, and a novel class set with 5 gestures. The base 
and validation sets were used during the pretraining phase, while the novel set was used 
during the inference phase. During inference, we divided the novel set into support and 
query sets. 

 
Experiments Setup. The models are optimized using an SGD optimizer during the 
training phase with a learning rate of 0.0001 selected empirically. Every time the model 
reaches a plateau, which occurs when the validation loss has not decreased for 10 epochs, 
we reduce the learning rate by a factor of 10. 

Table 1: Recognition accuracies of the proposed system with different number of samples 
in the support set. The highest accuracy is bolded and the second highest score is 
underlined. 

 
Support set size 

Without Embedding Propagation With Embedding Propagation 

Label Propagation Prototypical Networks Label Propagation Prototypical Networks 
1 72.2 67.2 70.8 68.6 
5 72.4 73.4 76.6 72.2 

10 69.8 65.4 68.8 76.0 

 
 

Results and discussion. We evaluated the proposed model using various configu- 
rations by varying the number of samples in the support set. The results, presented 
in Table 1, demonstrate the impact of embedding propagation on the model’s perfor- 
mance in SLR with limited samples. We evaluated system components with and without 
embedding propagation to highlight their effectiveness. As indicated in the table, an 
accuracy of 76.6% was achieved using the label propagation method combined with 
embedding propagation, compared to the same settings without embedding 
propagation. The second-highest accuracy, 76.0%, was obtained with prototypical 
networks with embedding propagation, marking an improvement of approximately 
11% over the same settings without embedding propagation. 

It is also evident that both smoothing techniques, label propagation and prototypical net- 
works, performed effectively with the transformer model using a small number of samples 
in the support set. Although increasing the number of samples generally enhanced the 
performance of all techniques, some models exhibited overfitting, which may explain the 
performance decline when 10 samples were used in the support set. 

 
5 Conclusions 

In this paper, we proposed a few-shot learning method for SLR designed to generalize 
effectively to unseen classes. Our approach maps features in the input space to embed- 
ding space using embedding propagation combined with label propagation techniques. 
Initially, sign gesture features are extracted from the input frames using a transformer 
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encoder. These features are then mapped to the embedding space through an embed- 
ding propagation method, followed by label propagation to smooth these embeddings. 
We evaluated the proposed method using the WLASL-100 dataset, and the experimen- 
tal results demonstrate the superiority of combining embedding propagation with label 
propagation compared to the prototypical network. For future work, we plan to evalu- 
ate our approach on different sign language datasets to further assess its generalization 
capabilities. 
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